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Phase-space energy of charged particles with negligible radiation:
Proof of spontaneous formation of magnetic structures and new effective forces
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The phase-space energy of a system of charged particles in the negligible radieatioin) nonrelativistic
limit is derived. The usefulness of the second-order approximation to this Hamiltonian, previously found by the
present author, is discussed and given a stronger theoretical foundation. As a result a typical length scale for
magnetic structures is found. The virial theorem is then applied to the second-order Hamiltonian. Together
with the assumption that magnetism is a first-order perturbation it proves that magnetic interaction lowers the
energy of a plasma. This proves that net currents must flow in a plasma and a simple estimate indicates that the
spontaneously forming magnetic structures are resistant to thermal disruption. The effective one-particle
Hamiltonian implied by the second-order Hamiltonian is calculated. It predicts a new effective many-body
force that accelerates charged particles near a large plasma. It is conjectured that this effective force could give
a simpler explanation for stellar wind and other large scale plasma phenof84063-651X97)01211-7

PACS numbgs): 52.25.Kn, 51.60ta, 41.20.Bt, 97.10.Me

I. ON DARWIN'S APPROACH vector potential on the canonical momenta. This led to a
TO ELECTROMAGNETISM closed expression for a second-order term and a physically
reasonable second-order Hamiltonidr2]. The question of
We live in a world built from charged particles. We know convergence was not completely resolved so we return to it

the exact theory needed to predict their behavior: Maxwell’here. The first part of this paper gives strong arguments that
equations and the Lorentz force law. Yet, when there aréhe second-order Darwin Hamiltonian, formul®) or (21),
macroscopic numbers of free charged particles, as in & qualitatively correct and physically useful for macroscopic
plasma or metal, the resulting coupled equations for particleS8YStems.

and fields become so complicated that approximations are 1h€ Darwin approximation to the equations of motion for
harged particles has been used before in plasma physics

necessary. The standard approximation for plasmas is magv_ ) I
. - o - ith considerable succe§$3—15. The Hamiltonian, on the
netohydrodynamics. In spite of the approximations, it hafother hand, has not been studied much in spite of the great

been very difficult to achieve a useful understanding o T T -~
X . . ) .importance of the Hamiltonian formalism in statistical phys-
plasma behavior using this theory. Here we will take a radi-

: . . ics and the great simplicity and generality of energy consid-
cally different approach. We will study the f|n'|te degree c)fe ations. The reason for this has been uselessness of the first-
freedom many-body system that best approximates the re%(der Hamiltonian and the unknown, or intractable, form of
system, using analytical mechanics. the exact Hamiltonian. The new second-order term that

As long as radiation can be neglected, a system Ofyakes the approximate Hamiltonian qualitatively correct is
charged particles has a conserved energy. Usually the corrgyerefore quite important.
sponding Hamiltonian is taken to contain the Coulomb, or  Thjs second-order Darwin Hamiltonian has far reaching
electrostatic, interaction energy only. In 1920 Darjifire-  consequences for the nature of the thermal equilibrium of
alized that magnetic effects can be included in such a desystems containing mobile charged particles with kinetic en-
scription up to terms that are proportional to/€)2. The ergy. As discussed in previous publications by the present
Darwin approach leads first to a Lagrang{@+6]. Darwin  author the magnetic interaction can be expected to play an
found a first-order approximation to the correspondingimportant role in low-temperature superconductiyity,12.
Hamiltonian[1,7-9 but, for a long time, no exact explicit Here we calculate, using the virial theorem, the time aver-
expression for it was known. The first-order Hamiltonian,ages of different contributions to the energy in this Hamil-
which gives excellent results for few-body systefeee[10]  tonian. We find that the magnetic energy really does lower
for a careful treatment of two-body systenms however, not  the energy of a plasma. This, of course, means that net cur-
correct for macroscopic systems. The crucial difference berents must flow in the plasma; otherwise there would not be
tween these is that in few-body systems magnetic effects areny magnetic effects. We also estimate the size and energy
always relativistic whereas in macroscopic systems this i®f the spontaneous magnetic structures and find that they
not normally the casg3]. should survive thermal fluctuations.

In 1968 Trubnikov and Kosachgw1] found a formally Finally we study the effective one-particle Hamiltonian
exact expression for the Darwin Hamiltonian in terms of athat arises from the second-order Darwin Hamiltonian when
series expansion for the canonical momentum. This exparene considers the motion of one of the particles assuming
sion, however, would not converge for the case of a macrogiven positions and momenta of all other particles. This is
scopic plasma. The present author reconsidered the probleseen to lead to the usual result for the case of a few-particle
and found a different expansion for the dependence of theystem. When macroscopic numbers contribute, on the other

1063-651X/97/565)/58588)/$10.00 56 5858 © 1997 The American Physical Society



56 PHASE-SPACE ENERGY OF CHARGED PARTICIE .. 5859

hand, a new effective, many-body, force is predicted. It is Vi g
conjectured that it might be useful for an understanding of An= 2 Pj T )
stellar plasmas, in particular stellar wind. 10 1

The expression(3) for the Hamiltonian is not a closed
Il. THE NONRELATIVISTIC DARWIN HAMILTONIAN expressionH(r; ,p;), since the quantitied;, depend on the

A. Background, the Darwin Lagrangian velocities instead of the momenta. Since

There is a well known exact relativistic Lagrangian den- 1
sity for charged particles interacting via the electromagnetic Vi_ﬁ
field. Since radiation is an unlikely phenomenon at low
speedgradiation is essentially proportional t@/c)*] one  we get the following equation foh; in terms of canonical
can derive an approximate Lagrangian in which the indepenmomenta:
dent degrees of freedom of the electromagnetic field are ne-

pi— % A(i)) (6)

2

glected. This Lagrangian, which depends only on particle At 2 ﬂ g; A= 2 Tij Yy @
positions and velocities, is the Darwin Lagrangian. It can be W& iy me? DT &) 1y me”
written

In order to solve this equation it is convenient to introduce
1 2 (of of matrix notation(An exact solution of a simplified continuum
L(rj vVi):Z SMVi— S5 ditocvirAG - (D version of this equation is given in Sec. JII.

Here the electromagnetic potentials at partickre given in C. Matrix solution for vector potential in terms of momenta
terms of the positions and velocities of the other particles, For brevity we now introduce

aj a;lvi+(v;-&j)&;] P.. 2

o= — and A;= , _ P _ G
& jé) rij w jé) 2er;; Ti=p, 2 Ri=pe ®
(2) J |
whereT;; was originally introduced by Kaufman and Soda

whereqj' Is the unit vector pointing from particletoward] . 4318]’ and whereR; are the classical particle radii. Using this
and r;; is the distance between them. These expressio ; . . )
We introduce matrix notation as follows:

come from approximating the exact Lienard-Wiechert poten-
tials, thereby choosing the Coulomb gau@e which the 0 Ty -+ Tiy
Coulomb interaction retains its velocity-independent form

Usually a relativistic second-order correction to the kinetic T= Tan 0 Tan
energy is added since Darwin originally had atornffiew- : '
body) systems in mind. In these systems magnetic effects are T T 0
always relativistic effects. In macroscopic systems that we N1 N2
have in mind here, the largeness of Avogadro’'s number R 0 - 0
makes magnetic effects large even nonrelativistically.

It must be emphasized that the Darwin Lagrangian stands -~ | 0 R1 - 0
on very firm theoretical and experimental ground. It really R= '
does give an excellent description of the dynamics of inter- 0 0 - R.1
acting charged particles when radiation is negligible N
[3.6.9,14,11 0 TRy, -+ TinRy

B. The Darwin Hamiltonian

R Tlel 0 cec T2N RN
U= . : . €)
Recently the authofrl2] derived the following exact ex- )
pression for the nonrelativistic Darwin Hamiltonian of a sys- TviR: TR - 0
tem of charged particles of massg and chargey; :
, These are B X 3N matrices(or NXN matrices with 3<3
H:Z [(P_|+ %%)) G oA, matrices as elementsThenU=TR has dimensionless ele

2m; 2m,c =HotIm, ments (length divided by length We also introduce the

®) 3N X1 matrices
where Ay is given by Eq.(2), and whereH, stands for Ay cpi/d; A\
kinetic plus Coulomb energy ar1_q:11 for the magnetic energy. A A i cp,/qs i A2

By means of the operatd?;; defined through = : ' 0= : ' AT :

1 1 ANy Cpn/dn AN

Q= — —+ .e. = — +e.e.: - >

Pija=zlat(a-€))e]=7(11€;6)a @ ——(-0PA, for A=1.2,... (10)

we can writeAy of Eqg. (2) as Using this Eq.(7) can be written
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o

(1+U)A=UA,. (11) 1 e .
’ == 2 5 (RA)TA,. (17)
If we now define\(/Y/E[((IwL U) ‘16] the solution we seek can
be written Darwin’s original (first-ordey Hamiltonian corresponds to
keeping only the first\ =1, term of this series.
A(ry,p)=[(1+ U)‘lﬁ],&(,:\;\)/(rj),&o(pj). (12) The terms of this series that correspond to exezan be

rearranged usingU*)TR=RU". This makes it possible to
The components of this column vector are thus the desiredrite the interaction energy as

Aiy(ri,pp)-
(O RLY %
UsingA, of Eqg.(10) we can write down the formal power | = 1 —(RAVTA +(RA TA =] 4]
series solution m KEO 2[ ( O) 2k+1 ( K+1) K+1] p d-
(18)
A= 2 Aixz - 2 (— G)"ﬁ\o (13)  The advantage of this form is that the first term in the square
A=1 A=1

brackets, for each, is a term that becomes more negative

) . ) o the more correlate¢paralle) the particle currentsg;p;) are,
to the matrix equatiori11), which also, of course, implies a \hile the second term is positive definite. This corresponds
power series expression fov in terms ofU. The ser|§s(13) to a split of the magnetic energly,, into paramagnetid,,
for W will always converge ifNR./R<1, whereN is the 554 diamagnetid,,, contributions. If we now keep only the
number of particlesR, the classical electron radius, aRl . — g term in this series, which we dendtgy=1p0+ 140, We
the typical radius of the system. For sufficiently large par-retain the qualitative feature of a part that can be negative
ticle densities this will not be fulfilled. The series fArcon- and a positive definite part. This choicg+ 1,9, Which
verges anyway as long as the veo{grha§ components only corresponds to keeping the first two terms of Ej), leads
in the space spanned by eigenvectordJathat have eigen- to the second-order Darwin Hamiltonian
values less than unity. There are thermodynamic arguments

. . 2
that this normally is the case, see Sec. Il E. H=" P_+ &¢' Qi AL
Trubnikov and Kosache11] have argued that when the ~ | 2m, T 2 P07 2mc P

series folW does not converge it is meaningless to use trun- 5
cated results in the study of plasmas. The discussion above + qi A A (19
shows that this is incorrect. Use of the quanfitghows that 2m;c? M )
the convergence of th&/ series is immaterial. The condi-
tions for the convergence of theseries have to do with the Where
long range correlation of momenta.

A= > p&& (20)

| I ’
! ij rij

D. Approximating the Darwin Hamiltonian 1D

Using the matrix notation above, and denoting matrixpreviously der.iv.ed by the.present author. For some purposes
transposition by a superscrifit, the kinetic energy can be the more explicit expression
written in the form

2
- Hes P.v %_z<prpu~gi>%
T=3 22 (RA) A, (14) oAM= r = mimet o,
=1 2m; 2 5
D a 1 ((pj'Pij)'(pk'Pik) qjqk)
The interaction term can be written Tomic® 2 i mjmyc? FijFik
(21)
=3 A A —-S(RE)A (15
mT o4 2mic T 2o for H=T+®+1 0+ g is useful.
and thus the Hamiltonia(B) in matrix form is E. Thermodynamic argument for convergence
1 The crucial question is now whether the seri&8) con-
H(rj,p)= §[RAo(pj)]T[Ao(pj)—A(rj )1+ D(r)), verges. Consider the=0 term ofl, in Eq. (18) which is

(16) 1 e T

lmo=5[—(RA) As+(RA) "Aq]. (22)

whereA now is expressed in terms of andp; according to

Eg. (12). To analyze this we first note that we can define a scalar
The problem with expressiafl2) is that, for a large num-  product on the relevantM-dimensional vectord through

ber of particles it is not easy to get explicit results forThe el
interaction term(15) can, using the serigd.3), be written (A-B)=(RA)'B. (23
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Using this notation we can write A
VIA=——1,, (30
1 . . o o c
T+ 1lmo=T+ 100+ 1go==[(Ag-Ag) — (Ag-Ap) + (Ar-A)].
mo pola0= 51 (Ao Ao) = (Ao A+ (A1 Ar)] which is well known to be solved by
(24)
R 1 3, (r')y
We now choose units so thag has unit lengthor, equiva- A(r) = cl r—r] dv’. (31)
lently, T=3):
L HereJ, is the current density in terms of velocity. Assuming
(Ag-Ag)=1. (250 for simplicity that there is only one kind of particle, with
o chargeq and number density, we can write
According to Eq.(10) A;=UA,, so if we assume that the
= ; : Jy(r=qv(r)n(r). (32)
operatorU rotatesA, an angled and changes its length to
we can evaluate Eq24) to Now using the relatiori6) we get
T+ 1 0(L 0)=£(1—L cos §+L2). (26) J.(r)= i _EA n(ry=J (r)_q_zAn (33)
T 2 v Im P73 P mc’ "

Since this is an energikinetic plus magnetica thermody-  where nowJ,=qgpn/m is the current density in terms of
namic equilibrium state will tend to minimize it. The above momentum. Inserting this in E¢30) we get
expression is minimized for
) q2 41

cos é \% —477Wn A:_TJP' (34

I-min:T<l (27)
This equation stands in the same relation to &j.as Eq.

and has the value (30) did to Eq.(5). Assuming a constant densitythis equa-

tion has the well known solution

T+11mo(Lmin, 6) L_coso (28)
molLlmin,¥)= 35— . 1 exp(— w|r—r'[)J,(r’
2 8 an-¢ | d ”||r_r,||) D gy, @9
This in turn is minimized foW=0, i.e., preferably&l should
be parallel toA} and of half the length. Since we now find where
that at minimum 9
2
T+|m0=§(1—z> (29)
is of dimension inverse length squared. We thus find that the

we find that the magnetic energy at most reduces the enerq\;};ector potential in terms of the momentum current depends

by 25% of the kinetic energy. This is in agreement with a ssentially only on momenta within the distance
different estimate if12].

o . 1 1

In conclusion we find thatUAy| < 3|A,| when the system Ry=—~ :
o o o oo © o JRen
is in an energy minimizing state. This indicates tHafA,| €
should be even smaller, and so on, and thus that the seriggere we assume electrons so thy&t(mc?) = R, is the clas-
(18) might converge. For a large system it will certainly not gjca| electron radius.
always converge, independently of stafq. will be large We now consider the second-order Darwin Hamiltonian,
when there are long range correlations between the directiong=Hg+ 1,0+ 149, of Eq.(21). If R is a typical distance of
of theq;p; . High temperature will, of course, tend to reduce interestl , is roughly
such correlations and should thus aid convergence.

(37)

NZ

v\?e?
I oo —) =5 (39
IIl. LENGTH SCALE OF MAGNETIC STRUCTURE 2 \c/ R

Here we demonstrate how one can find an exact solutioivhere N is the number of particles. In a similar way we
for Aqy(rj,p;) in a simplified case. This solution is seen to estimatel 4o to
predict a length scale for magnetic structure. We then show
that the approximate, second-order, Hamiltonian predicts the N3 (v)?e?
same length scale for these structures. This provides our final lao~ Re? c) R? (39
argument for the usefulness of our Hamiltonian; subsequent
sections discuss some applications. A spontaneous magnetic structure must minimize the mag-
We can regard Eq5), ignoring the projection operator, netic energy so we require that for such a structure the sum
as a solution of théPoisson equation of the above terms,
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N2 [v)2 e? The two magnetic contributions both contain? so we can
Im(R)~ = =] 5(NRe/R-1), (400 write this
2 \c/ R
is minimized With respect tdR. This clear!y means that_ o=(2T_+qT)+i2(3@+4@). (49)
R=2NR.. Assuming that the number density of particles is c

n, i.e.,n=3N/(47R%), we then find that the typica for a

magnetic structure is given by If we formally regardc as an independent parameter here, so
that lettingc—c means turning magnetism off, and vice
1 versa, we find that the two groups of terms must be zero
R~ JRn’ (41) separately. This is equivalent to assuming that the magnetic
e

effects lead to purely additive independent contributions to

Heren is the number density of mobile charged particles thatthe energyfirst-order perturbationsWe then have both that

have correlated velocities due to magnetic interaction. We
see that we find the same result as in By). This length
scale is in agreement with that of Trubnikov and Kosache\g[
[11], where it is called]. . One finally notes that 1/, with u
given by Eq.(36), is equivalent to the London penetration
depth in superconductors.

0=2T+®, (49)
he classical virial theorem, and that
0=3l 5o+ 4l o, (50)

separately. Since the kinetic energlyand the diamagnetic

IV. SPONTANEOUS MAGNETIC ENERGY LOWERING energy| o, are both positive definite we express the time

INA PLASMA average of the Hamiltoniarki{=Hy+ 1,0+ 140, in terms of
A. The virial theorem these. Use of the above virial results then gives
We will now make some estimates concerning the time o
averages of the two magnetic contributions to the second- =—T—= E, (51)
order Darwin Hamiltoniari21). Hamilton's equations are, in 3
our case, S —
whereH,=—T, as usual. We thus conclude that the virial
. OH . IH theorem, together with the assumption that magnetism is a
riza_pi' Pi=- [9_ri' (42 first-order perturbation, predicts thatagnetic interactions
lower the energyThis is a highly nontrivial result; external
Using this we get that magnetic fields are well known not to change the energy of a
classical system of charged particle9]. Note that it also
) IH ) IH means that currents must flow in the thermal equilibrium
Peli=pie o =l e (43 plasma due to anisotropic velocity distributioftontrary to
conventional wisdoni21]).
and adding these gives An interesting observation regarding the above calcula-
tions: if the traditional first-order Darwin Hamiltonian, con-
d IH IH taining only| 5o, had been used, the result for the magnetic
S (Pr) =P o= . (44) - | i
dt ap, ar, correction to the energy would have been zero. This makes

statistical mechanics based on the first-order Darwin Hamil-
For a bound system, executing motion in a finite region, theonian[22] dubious. In this respect therefore there is a dra-
time average of the time derivative will be zero. This is thematic difference between Darwin’s first-order and Hése
crucial observation of the traditional virial theorem, see, e.g.second-order Hamiltonian.
[19]. If we thus denote time average by an overbar we get

B. Energy and stability of magnetic structures

IH IH

-T—ri o (45 For few-body systems it is a natural consequence of the
Pi ! relativistic nature of magnetism that magnetic effects are

Qroportional to ¢/c)?. For macroscopic systems, on the

other hand, the largeness of Avogadro’s number together

0=p

Use of Euler's theorem on homogeneous functions gives u

OH with the slow, 1¥, decrease of with distance, results in a
E pi- T=2T+ 2l pot+ 2l go, totally different situation. If one used a Hamiltonian without
: P the diamagnetic termy- A2, or, alternatively calculated in

Eq. (3) ignoring the screening of E¢35), the magnetic en-
(46) ergy has a tendenc_;y to diverge. In 'Se'c. Il E, forn'm'lg), we
found that magnetic energy is minimized when it is roughly
25% of the kinetic energy. This is also in agreement with a
so the time averaged result can be written different calculation if12] (Sec. X). We can also find this
o result by inserting the minimizindR=2R.N into the esti-
0=2T+ @+ 3l o+ 4l 4. (47 mate(40). This gives

oH
Ei ri'a_ri:_CD_IpO_ZIdOv
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1 . . : . :
i~ = gNmo?, (52 H=H("+j(2#i) HD+HI=HG+H], (59
wh|ch means that,,~—T/4. It is instructive to note how whereH!'] are those terms df{ that do not refer to particle

¢~ 2 cancels in thls calculation because of its appearance in ThenH(') is the effective Hamiltonian of particle This
Re.. Note that the numbeX here is the number of particles Hamiltonlan can then be compared to the Hamiltonian
in a magnetic structure. This number is given by

P8 _ 125312 L - : g 1 2
lg:tyan—n R, ¢, so it increases with decreasing den He=— (p— gA(r ] +qa(r,t) (59)
An expression for magnetic energy inspired by the “ex o o
act” result (35) should be something like of a charged patrticle in an external electromagnetic field.
Bi- P'] . pJ qqu eX[( - I’ij /Rm) A. The weak field case
=~ 2 m;m. c2 i . (59 W) Eiret i ; ;
i<j ih ij We now calculateis;. First, if we ignore the last, dia-

magnetic terms of the other particles, we have
where we have replaced the Coulomb-like factor jp of g P

Eq. (21) with a Yukawa-type exponentially screened factor.

It should give a reasonable estimate for constant density. An > M= —¢<|> 2m c Pi-Aui) (60)
estimate for the magnetic energy of a spontaneous magnetic 1)
structure based on this expression is We thus get the effective one-particle Hamiltonian
1 _[(v\?2e®exp—1) 1 q 2
~_ N2~ T 77 N i
Im~=3N (c) R, (54) H(')NZ—mI (pi_EAl(i) iy (61

From Eq.(37) we haveR,=1/\/Ren. If we put n= N/R3m i.e., essentially Eq59). We thus get the expected agreement
into this we getR,,=NR,, and this inserted into the above in this case. Note that the new second-order term, for particle

estimate for ,, gives i, is essential for the resu(61); without it one would not
, have a complete square for the combined kinetic and mag-
1 v|“e 1 netic energies.
—— - I 2
I'm 2exq1)N<c) R, 6va . (55

. . . ) B. The remaining terms
The agreement of this result with E(2) is reassuring.

2 . . . ; ; 0] ;
Statistical mechanical considerations tell us that the W€ now study the contribution tdlcy from the diamag-

phase-space probability density is given by netic terms of the other particles. We thus consider
2 2
p(rj.py) ~exp —H/kT)=exd —{T(p;,) + P(r)) i a; ai [aip P
= 2 2m;c? A A= 2 ame? me T,
11y PKT]. (56) o e SR AT
P P, P,
We have found that the contribution by, to the energy is of + > Ll ﬂ) : (ﬂ U ap J) .
the same order of magnitude as the other contributions and k) MC g/ \MiC Tij 1) MIc 1
that it increases quadratically with increasing speed of the (62)

particles, i.e., linearly with increasing temperature. Statistical
mechanics thus predicts that magnetic structures in phadéwe now define
space should not be sensitive to thermal disruption. b b
i qkpk kJ aip; ij
A= 2 A" me 1. (63

V. EFFECTIVE ONE-PARTICLE HAMILTONIAN k(#i.j) ka Ik m; c Fij

If we wish to study the equations of motion for particle we can rewrite Eq(62) as
assuming given positions and momenta for the remaining
particles we need to separate out all termg+ofhat contain i
the position and momentum coordinates of particleNe g
introduce the notation

2 J [I] -

p| g m c lz 1(J) ij
2
j

& 2m, mimjc“rizj

H(i)_z ¢(|> 2mc p'Al(i)+WiC2Al(i)'Al(i)y
(57

so that Eq.(19) can be writtenH=3;H"). If we further
denote byHi(') those terms irt{{) that contain position and Here the last sum does not contajror p; and thus belongs
momentum coordinates of partidleve can rewrite/{ in the  to H['l. The first two, however, should contribute to the ef-
form fective one-particle Hamiltonian for particle

A['] Al

&) 2me? Mo A (64)
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C. A divergent self-interaction
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A few points are worth mentioning here. First it is pos-

We first consider the first of these contributions. We cansible, by means of a slightly different definition Aﬁ(,),

write it
(pi-Pij)? qq, 1

iZ0) 2mi

1
4_2(1+3 cog 0”)
| (¢|) mm]C I’IJ

P

—2—F(I’|,p|) (65)

where ¢;; is the angle betweep; ande;. Here q,/(m c?)

find the algebraic forn§69) without discarding the divergent
self-interaction(65). It can, so to speak, be absorbed in the
definition of the vector potential. There are, however, no
definitions that will bring the Hamiltonian to the for(61).
One also notes that for a two-particle system
Al )=At)=0, soAf =0, and the extra terms of E¢69)
vanish when there are only two particles.

The notatiorA(;) is chosen since this is a vector potential
defined in terms ofp— (g/c)A], a quantity that corresponds
to mv with normal interpretations of the quantities. Similarly
the notationAﬁ) is chosen since this quantity is a potential
defined in terms of the vector potential. The explicit expres-

are classical particle radii. Since these are largest for elesion forA(I) is found to be
trons we assume that only these contribute. To estimate the

factor F we further ignore the directional dependence and
assume that particleis at the center of a spherical distribu-
tion of electrons of constant number dengityinside a ra-

diusR. We then get

eZ 2 n eZ 2 R
(66)

F will thus become of unit order of magnitude when
R2~NR§. Since the Thompson scattering cross section for
photons is~ Rg this means that for sudR values the plasma
is opaque. FoR values of the order of magnitude of a mag-
Rn~NR; we see thaF~1/N and essen-

netic structureR=

a [q Py
A _ ] ] [i] ]
Ab= 2 ( Af(;)) —

i#H mic Fij

2
- 2 _Jz 2 _qkpk.ﬂ Ry (70)
i(#) MC™ k) MC Tyj) Tij

For an energy minimizing state this vector will thus tend to
be parallel top; and aIsoA?i) so that the first extra term of
Eq. (69 will be mostly positive.

E. The final result

In conclusion we have now found that the Hamiltonian
(69) of a particle moving among other charged particles with

tially negligible. The fact thaE can become large in a large 91V€N motions can be written

plasma is thus seen to be an artifact of our approximation. As
formula (35) shows, all results depending on integrations be-
length scale are spurious. In what follows we

yond theR,
ignore this term.

D. The physical contribution

The second term in Eq64), on the other hand, contrib-

utes in a simple way t61{}. If we define

= A i [I U _ A _aA
0= &, mjc(p Aty | 1 =P Ay »
(67)
we get
2
p| G
Hog= 2m, +0idi)— mc (|)+2 2A1(|> Agi) -
(68)

Equivalently, according to the definitions of E(7), we
find

2

+0; i)

1 Qi A
Hef‘f 2m|<p| l)

q i

J’_ —_—
m;c?

for the effective one-particle Hamiltonian.

2

1 q \? q
Hor=g | P~ S Al +adt —5Va, (7D

where ¢ and
1
Va(r,t)=A-A N+ 5 AA. AR (72

are scalar fields, and and A* are vector fields. If this is
correct it would mean that, apart from coupling to electric
and magnetic fields as usual, the particle also couples to the,
essentially repulsive, scalar field, with coupling constant
q?/(mc@).

The integrations that determine the fiel} should, of
course not be extended much beyond the distance Bgale
This means that in the interior of a plasma the repulsive force
will mainly contribute to the pressure but not accelerate the
particles. At a surface it seems, however, to be mainly a
repulsive force.

If one considers a charged particle in the neighborhood of
a plasmafor example, a starone knows that there will not
normally be any net electric fields. One also notes that a
(time-independentmagnetic field will not do work on the
particle. The new term of equation E(/1) will, however,
do work on such a particle and accelerate it away from a
current distribution(a star is predicted to have such a distri-
bution according to the discussion in Sec). lIt is thus
tempting to believe that this term should be taken seriously
and that it will provide a simple and natural explanation of
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the astrophysical phenomena manifested by stellar wind andecessor, the simplifiedirst-ordey Darwin Hamiltonian.
comet tails. Until more quantitative studies have been com- (2) The thermodynamic and other arguments that the

pleted these beliefs must be considered preliminary. second-order Darwin Hamiltonian predicts magnetic struc-
tures of the correct size. Especially the agreement with pre-
VI. CONCLUSIONS dictions of the simplified exact solutiof35).

(3) The proof based on the virial theorem that magnetic

Above we have investigated the derivation, the credibil-energy lowers the energy of a plasma in the sense that the
ity, and some consequences of the second-order Darwitime average of the magnetic terms contribute a negative net
Hamiltonian. This Hamiltonian, which is an estimate of theresult to the time average of the energy. The thermodynamic
conserved phase-space energy of a system of charged passtimates which show that magnetic structures are stable to
ticles, to the extent that such a concept is meaningful, takethermal disruption.
magnetic effects into account. In view of the great generality (4) The prediction of new effective many-body forces on
and simplicity of energy and statistical mechanical argu-a charge in a plasma through the effective one-particle
ments such a Hamiltonian should be useful in the investigaHamiltonian. Magnetohydrodynamics also predicts such
tion of how magnetic phenomena arise. forces but this may give a more direct way of understanding

The main achievements of this paper are the following. them.

(1) The proof that the magnetic energy can be split into Note added in proofAfter submission of this manuscript
paramagnetiqpotentially energy loweringterms and dia- it has come to the author’'s attention that the result of Eq.
magnetic(positive definite terms. The fact that the second- (53) in fact has been derived by Jones and Py#8], in
order Darwin Hamiltonian takes into account the leadingFourier transformed form, for a homogeneous, one-
term of both types makes it considerably better than its preeomponent plasma.
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