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Phase-space energy of charged particles with negligible radiation:
Proof of spontaneous formation of magnetic structures and new effective forces

Hanno Esse´n
Department of Mechanics, Royal Institute of Technology, S-100 44 Stockholm, Sweden

~Received 12 March 1997!

The phase-space energy of a system of charged particles in the negligible radiation~Darwin! nonrelativistic
limit is derived. The usefulness of the second-order approximation to this Hamiltonian, previously found by the
present author, is discussed and given a stronger theoretical foundation. As a result a typical length scale for
magnetic structures is found. The virial theorem is then applied to the second-order Hamiltonian. Together
with the assumption that magnetism is a first-order perturbation it proves that magnetic interaction lowers the
energy of a plasma. This proves that net currents must flow in a plasma and a simple estimate indicates that the
spontaneously forming magnetic structures are resistant to thermal disruption. The effective one-particle
Hamiltonian implied by the second-order Hamiltonian is calculated. It predicts a new effective many-body
force that accelerates charged particles near a large plasma. It is conjectured that this effective force could give
a simpler explanation for stellar wind and other large scale plasma phenomena.@S1063-651X~97!01211-7#

PACS number~s!: 52.25.Kn, 51.60.1a, 41.20.Bt, 97.10.Me
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I. ON DARWIN’S APPROACH
TO ELECTROMAGNETISM

We live in a world built from charged particles. We kno
the exact theory needed to predict their behavior: Maxwe
equations and the Lorentz force law. Yet, when there
macroscopic numbers of free charged particles, as i
plasma or metal, the resulting coupled equations for parti
and fields become so complicated that approximations
necessary. The standard approximation for plasmas is m
netohydrodynamics. In spite of the approximations, it h
been very difficult to achieve a useful understanding
plasma behavior using this theory. Here we will take a ra
cally different approach. We will study the finite degree
freedom many-body system that best approximates the
system, using analytical mechanics.

As long as radiation can be neglected, a system
charged particles has a conserved energy. Usually the c
sponding Hamiltonian is taken to contain the Coulomb,
electrostatic, interaction energy only. In 1920 Darwin@1# re-
alized that magnetic effects can be included in such a
scription up to terms that are proportional to (v/c)2. The
Darwin approach leads first to a Lagrangian@2–6#. Darwin
found a first-order approximation to the correspond
Hamiltonian @1,7–9# but, for a long time, no exact explici
expression for it was known. The first-order Hamiltonia
which gives excellent results for few-body systems~see@10#
for a careful treatment of two-body systems! is, however, not
correct for macroscopic systems. The crucial difference
tween these is that in few-body systems magnetic effects
always relativistic whereas in macroscopic systems thi
not normally the case@3#.

In 1968 Trubnikov and Kosachev@11# found a formally
exact expression for the Darwin Hamiltonian in terms o
series expansion for the canonical momentum. This exp
sion, however, would not converge for the case of a mac
scopic plasma. The present author reconsidered the pro
and found a different expansion for the dependence of
561063-651X/97/56~5!/5858~8!/$10.00
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vector potential on the canonical momenta. This led to
closed expression for a second-order term and a physic
reasonable second-order Hamiltonian@12#. The question of
convergence was not completely resolved so we return
here. The first part of this paper gives strong arguments
the second-order Darwin Hamiltonian, formula~19! or ~21!,
is qualitatively correct and physically useful for macroscop
systems.

The Darwin approximation to the equations of motion f
charged particles has been used before in plasma phy
with considerable success@13–15#. The Hamiltonian, on the
other hand, has not been studied much in spite of the g
importance of the Hamiltonian formalism in statistical phy
ics and the great simplicity and generality of energy cons
erations. The reason for this has been uselessness of the
order Hamiltonian and the unknown, or intractable, form
the exact Hamiltonian. The new second-order term t
makes the approximate Hamiltonian qualitatively correct
therefore quite important.

This second-order Darwin Hamiltonian has far reach
consequences for the nature of the thermal equilibrium
systems containing mobile charged particles with kinetic
ergy. As discussed in previous publications by the pres
author the magnetic interaction can be expected to play
important role in low-temperature superconductivity@16,12#.
Here we calculate, using the virial theorem, the time av
ages of different contributions to the energy in this Ham
tonian. We find that the magnetic energy really does low
the energy of a plasma. This, of course, means that net
rents must flow in the plasma; otherwise there would not
any magnetic effects. We also estimate the size and en
of the spontaneous magnetic structures and find that
should survive thermal fluctuations.

Finally we study the effective one-particle Hamiltonia
that arises from the second-order Darwin Hamiltonian wh
one considers the motion of one of the particles assum
given positions and momenta of all other particles. This
seen to lead to the usual result for the case of a few-par
system. When macroscopic numbers contribute, on the o
5858 © 1997 The American Physical Society
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56 5859PHASE-SPACE ENERGY OF CHARGED PARTICLES . . .
hand, a new effective, many-body, force is predicted. It
conjectured that it might be useful for an understanding
stellar plasmas, in particular stellar wind.

II. THE NONRELATIVISTIC DARWIN HAMILTONIAN

A. Background, the Darwin Lagrangian

There is a well known exact relativistic Lagrangian de
sity for charged particles interacting via the electromagn
field. Since radiation is an unlikely phenomenon at lo
speeds@radiation is essentially proportional to (v/c)3# one
can derive an approximate Lagrangian in which the indep
dent degrees of freedom of the electromagnetic field are
glected. This Lagrangian, which depends only on part
positions and velocities, is the Darwin Lagrangian. It can
written

L~r j ,vj !5(
i

S 1

2
mivi

22
qi

2
f~ i !1

qi

2c
vi•A~ i !D . ~1!

Here the electromagnetic potentials at particlei are given in
terms of the positions and velocities of the other particle

f~ i !5 (
j ~Þ i !

qj

r i j
and A~ i !5 (

j ~Þ i !

qj@vj1~vj•ei j !ei j #

2cri j
,

~2!

whereei j is the unit vector pointing from particlei toward j
and r i j is the distance between them. These express
come from approximating the exact Lienard-Wiechert pot
tials, thereby choosing the Coulomb gauge~in which the
Coulomb interaction retains its velocity-independent form!.
Usually a relativistic second-order correction to the kine
energy is added since Darwin originally had atomic~few-
body! systems in mind. In these systems magnetic effects
always relativistic effects. In macroscopic systems that
have in mind here, the largeness of Avogadro’s num
makes magnetic effects large even nonrelativistically.

It must be emphasized that the Darwin Lagrangian sta
on very firm theoretical and experimental ground. It rea
does give an excellent description of the dynamics of in
acting charged particles when radiation is negligib
@3,6,9,14,17#.

B. The Darwin Hamiltonian

Recently the author@12# derived the following exact ex
pression for the nonrelativistic Darwin Hamiltonian of a sy
tem of charged particles of massmi and chargeqi :

H5(
i

F S pi
2

2mi
1

qi

2
f~ i !D 2

qi

2mic
pi•A~ i !G5H01I m ,

~3!

where A( i ) is given by Eq.~2!, and whereH0 stands for
kinetic plus Coulomb energy andI m for the magnetic energy
By means of the operatorPi j defined through

Pi j a[
1

2
@a1~a•ei j !ei j #5

1

2
~11ei j ei j !a, ~4!

we can writeA( i ) of Eq. ~2! as
s
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A~ i !5 (
j ~Þ i !

Pi j

vj

c

qj

r i j
. ~5!

The expression~3! for the Hamiltonian is not a closed
expression,H(r j ,pj ), since the quantitiesA( i ) depend on the
velocities instead of the momenta. Since

vi5
1

mi
S pi2

qi

c
A~ i !D ~6!

we get the following equation forA( i ) in terms of canonical
momenta:

A~ i !1 (
j ~Þ i !

Pi j

r i j

qj
2

mjc
2 A~ j !5 (

j ~Þ i !

Pi j

r i j

qjpj

mjc
. ~7!

In order to solve this equation it is convenient to introdu
matrix notation.~An exact solution of a simplified continuum
version of this equation is given in Sec. III.!

C. Matrix solution for vector potential in terms of momenta

For brevity we now introduce

Ti j [
Pi j

r i j
and Rj[

qj
2

mjc
2 , ~8!

whereTi j was originally introduced by Kaufman and Sod
@18#, and whereRj are the classical particle radii. Using th
we introduce matrix notation as follows:

TI[S 0 T12 ••• T1N

T21 0 ••• T2N

A A ••• A

TN1 TN2 ••• 0
D ,

RI[S R11 0 ••• 0

0 R21 ••• 0

A A ••• A

0 0 ••• RN1
D ,

UI[S 0 T12R2 ••• T1NRN

T21R1 0 ••• T2NRN

A A ••• A

TN1R1 TN2R2 ••• 0
D . ~9!

These are 3N33N matrices~or N3N matrices with 333
matrices as elements!. ThenUI5TIRI has dimensionless ele
ments ~length divided by length!. We also introduce the
3N31 matrices

A¢ [S A~1!

A~2!

A
A~N!

D , A¢ 0[S cp1 /q1

cp2 /q2

A
cpN /qN

D , A¢ l[S Al~1!

Al~2!

A
Al~N!

D
52~2UI !lA¢ 0 for l51,2,... . ~10!

Using this Eq.~7! can be written
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5860 56HANNO ESSÉN
~1I1UI !A¢ 5UIA¢ 0 . ~11!

If we now defineWI [@(1I1UI)21UI# the solution we seek ca
be written

A¢ ~r j ,pj !5@~1I1UI !21UI#A¢ 05WI ~r j !A¢ 0~pj !. ~12!

The components of this column vector are thus the des
A( i )(r j ,pj ).

UsingA¢ l of Eq. ~10! we can write down the formal powe
series solution

A¢ 5 (
l51

`

A¢ l52 (
l51

`

~2UI !lA¢ 0 ~13!

to the matrix equation~11!, which also, of course, implies
power series expression forWI in terms ofUI. The series~13!
for WI will always converge ifNRe /R,1, whereN is the
number of particles,Re the classical electron radius, andR
the typical radius of the system. For sufficiently large p
ticle densities this will not be fulfilled. The series forA¢ con-
verges anyway as long as the vectorA¢ 0 has components only
in the space spanned by eigenvectors ofUI that have eigen-
values less than unity. There are thermodynamic argum
that this normally is the case, see Sec. II E.

Trubnikov and Kosachev@11# have argued that when th
series forWI does not converge it is meaningless to use tr
cated results in the study of plasmas. The discussion ab
shows that this is incorrect. Use of the quantityA¢ shows that
the convergence of theWI series is immaterial. The cond
tions for the convergence of theA¢ series have to do with the
long range correlation of momenta.

D. Approximating the Darwin Hamiltonian

Using the matrix notation above, and denoting mat
transposition by a superscriptT, the kinetic energy can be
written in the form

T5(
i 51

N pi
2

2mi
5

1

2
~RIA¢ 0!TA¢ 0 . ~14!

The interaction term can be written

I m[2(
i

qi

2mic
pi•A~ i !52

1

2
~RIA¢ 0!TA¢ ~15!

and thus the Hamiltonian~3! in matrix form is

H~r j ,pj !5
1

2
@RIA¢ 0~pj !#

T@A¢ 0~pj !2A¢ ~r j ,pj !#1F~r j !,

~16!

whereA¢ now is expressed in terms ofr j andpj according to
Eq. ~12!.

The problem with expression~12! is that, for a large num-
ber of particles it is not easy to get explicit results forA¢ . The
interaction term~15! can, using the series~13!, be written
d

-

ts

-
ve

I m52 (
l51

`
1

2
~RIA¢ 0!TA¢ l . ~17!

Darwin’s original ~first-order! Hamiltonian corresponds to
keeping only the first,l51, term of this series.

The terms of this series that correspond to evenl can be
rearranged using (UIl)TRI5RIUIl. This makes it possible to
write the interaction energy as

I m5 (
k50

`
1

2
@2~RIA¢ 0!TA¢ 2k111~RIA¢ k11!TA¢ k11#[I p1I d .

~18!

The advantage of this form is that the first term in the squ
brackets, for eachk, is a term that becomes more negati
the more correlated~parallel! the particle currents (qipi) are,
while the second term is positive definite. This correspon
to a split of the magnetic energy,I m , into paramagnetic,I p ,
and diamagnetic,I d , contributions. If we now keep only the
k50 term in this series, which we denoteI m05I p01I d0 , we
retain the qualitative feature of a part that can be nega
and a positive definite part. This choice,H01I m0 , which
corresponds to keeping the first two terms of Eq.~17!, leads
to the second-order Darwin Hamiltonian

H5(
i

S pi
2

2mi
1

qi

2
f~ i !2

qi

2mic
pi•A1~ i !

1
qi

2

2mic
2 A1~ i !•A1~ i !D , ~19!

where

A1~ i !5 (
j ~Þ i !

Pi j

pj

mjc

qj

r i j
, ~20!

previously derived by the present author. For some purpo
the more explicit expression

H5(
i

pi
2

2mi
1(

i , j

qiqj

r i j
2(

i , j
S pi•Pi j •pj

mimjc
2 D qiqj

r i j

1(
i

qi
2

mic
2

1

2 (
j ,k~Þ i !

S ~pj•Pi j !•~pk•Pik!

mjmkc
2

qjqk

r i j r ik
D
~21!

for H5T1F1I p01I d0 is useful.

E. Thermodynamic argument for convergence

The crucial question is now whether the series~13! con-
verges. Consider thek50 term of I m in Eq. ~18! which is

I m05
1

2
@2~RIA¢ 0!TA¢ 11~RIA¢ 1!TA¢ 1#. ~22!

To analyze this we first note that we can define a sca
product on the relevant 3N-dimensional vectorsA¢ through

~A¢ •B¢ ![~RIA¢ !TB¢ . ~23!
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56 5861PHASE-SPACE ENERGY OF CHARGED PARTICLES . . .
Using this notation we can write

T1I m05T1I p01I d05
1

2
@~A¢ 0•A¢ 0!2~A¢ 0•A¢ 1!1~A¢ 1•A¢ 1!#.

~24!

We now choose units so thatA¢ 0 has unit length~or, equiva-
lently, T5 1

2!:

~A¢ 0•A¢ 0!51. ~25!

According to Eq.~10! A¢ 15UIA¢ 0 , so if we assume that th

operatorUI rotatesA¢ 0 an angleu and changes its length toL
we can evaluate Eq.~24! to

T1I m0~L,u!5
1

2
~12L cosu1L2!. ~26!

Since this is an energy~kinetic plus magnetic! a thermody-
namic equilibrium state will tend to minimize it. The abov
expression is minimized for

Lmin5
cosu

2
,1 ~27!

and has the value

T1I m0~Lmin ,u!5
1

2
2

cos2 u

8
. ~28!

This in turn is minimized foru50, i.e., preferablyA¢ 1 should
be parallel toA¢ 0 and of half the length. Since we now fin
that at minimum

T1I m05
1

2 S 12
1

4D ~29!

we find that the magnetic energy at most reduces the en
by 25% of the kinetic energy. This is in agreement with
different estimate in@12#.

In conclusion we find thatuUIA¢ 0u< 1
2 uA¢ 0u when the system

is in an energy minimizing state. This indicates thatuUI2A¢ 0u
should be even smaller, and so on, and thus that the s
~18! might converge. For a large system it will certainly n
always converge, independently of state.A¢ 1 will be large
when there are long range correlations between the direct
of theqipi . High temperature will, of course, tend to redu
such correlations and should thus aid convergence.

III. LENGTH SCALE OF MAGNETIC STRUCTURE

Here we demonstrate how one can find an exact solu
for A( i )(r j ,pj ) in a simplified case. This solution is seen
predict a length scale for magnetic structure. We then sh
that the approximate, second-order, Hamiltonian predicts
same length scale for these structures. This provides our
argument for the usefulness of our Hamiltonian; subsequ
sections discuss some applications.

We can regard Eq.~5!, ignoring the projection operator
as a solution of the~Poisson! equation
gy

ies

ns

n

w
e
al
nt

¹2A52
4p

c
Jv , ~30!

which is well known to be solved by

A~r!5
1

c E Jv~r8!

ur2r8u
dV8. ~31!

HereJv is the current density in terms of velocity. Assumin
for simplicity that there is only one kind of particle, wit
chargeq and number densityn, we can write

Jv~r!5qv~r!n~r!. ~32!

Now using the relation~6! we get

Jv~r!5q
1

m S p2
q

c
ADn~r!5Jp~r!2

q2

mc
An, ~33!

where nowJp5qpn/m is the current density in terms o
momentum. Inserting this in Eq.~30! we get

S ¹224p
q2

mc2 nDA52
4p

c
Jp . ~34!

This equation stands in the same relation to Eq.~7! as Eq.
~30! did to Eq.~5!. Assuming a constant densityn this equa-
tion has the well known solution

A~r!5
1

c E exp~2mur2r8u!Jp~r8!

ur2r8u
dV8, ~35!

where

m2[4p
q2

mc2 n ~36!

is of dimension inverse length squared. We thus find that
vector potential in terms of the momentum current depe
essentially only on momenta within the distance

Rm5
1

m
;

1

ARen
, ~37!

where we assume electrons so thatq2/(mc2)5Re is the clas-
sical electron radius.

We now consider the second-order Darwin Hamiltonia
H5H01I p01I d0 , of Eq. ~21!. If R is a typical distance of
interestI p0 is roughly

I p0;2
N2

2 S v
cD 2 e2

R
, ~38!

where N is the number of particles. In a similar way w
estimateI d0 to

I d0;Re

N3

2 S v
cD 2 e2

R2 . ~39!

A spontaneous magnetic structure must minimize the m
netic energy so we require that for such a structure the s
of the above terms,
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I m~R!;
N2

2 S v
cD 2 e2

R
~NRe /R21!, ~40!

is minimized with respect toR. This clearly means tha
R52NRe . Assuming that the number density of particles
n, i.e.,n53N/(4pR3), we then find that the typicalR for a
magnetic structure is given by

R;
1

ARen
. ~41!

Heren is the number density of mobile charged particles t
have correlated velocities due to magnetic interaction.
see that we find the same result as in Eq.~37!. This length
scale is in agreement with that of Trubnikov and Kosach
@11#, where it is calleddc . One finally notes that 1/m, with m
given by Eq.~36!, is equivalent to the London penetratio
depth in superconductors.

IV. SPONTANEOUS MAGNETIC ENERGY LOWERING
IN A PLASMA

A. The virial theorem

We will now make some estimates concerning the ti
averages of the two magnetic contributions to the seco
order Darwin Hamiltonian~21!. Hamilton’s equations are, in
our case,

ṙ i5
]H
]pi

, ṗi52
]H
]r i

. ~42!

Using this we get that

pi• ṙ i5pi•
]H
]pi

, r i•ṗi52r i•
]H
]r i

, ~43!

and adding these gives

d

dt
~pi•r i !5pi•

]H
]pi

2r i•
]H
]r i

. ~44!

For a bound system, executing motion in a finite region,
time average of the time derivative will be zero. This is t
crucial observation of the traditional virial theorem, see, e
@19#. If we thus denote time average by an overbar we g

05pi•
]H
]pi

2r i•
]H
]r i

. ~45!

Use of Euler’s theorem on homogeneous functions gives

(
i

pi•
]H
]pi

52T12I p012I d0 ,

(
i

r i•
]H
]r i

52F2I p022I d0 , ~46!

so the time averaged result can be written

052T̄1F̄13I p014I d0. ~47!
t
e

v

e
d-

e

.,

s

The two magnetic contributions both containc22 so we can
write this

05~2T̄1F̄!1
1

c2 ~3I p08 14I d08 !. ~48!

If we formally regardc as an independent parameter here,
that letting c→` means turning magnetism off, and vic
versa, we find that the two groups of terms must be z
separately. This is equivalent to assuming that the magn
effects lead to purely additive independent contributions
the energy~first-order perturbations!. We then have both tha

052T̄1F̄, ~49!

the classical virial theorem, and that

053I p014I d0, ~50!

separately. Since the kinetic energyT and the diamagnetic
energy I D0 are both positive definite we express the tim
average of the Hamiltonian,H̄5H01I p01I d0, in terms of
these. Use of the above virial results then gives

H̄52T̄2
1

3
I d0, ~51!

whereH052T̄, as usual. We thus conclude that the vir
theorem, together with the assumption that magnetism
first-order perturbation, predicts thatmagnetic interactions
lower the energy. This is a highly nontrivial result; externa
magnetic fields are well known not to change the energy o
classical system of charged particles@20#. Note that it also
means that currents must flow in the thermal equilibriu
plasma due to anisotropic velocity distributions~contrary to
conventional wisdom@21#!.

An interesting observation regarding the above calcu
tions: if the traditional first-order Darwin Hamiltonian, con
taining only I p0 , had been used, the result for the magne
correction to the energy would have been zero. This ma
statistical mechanics based on the first-order Darwin Ham
tonian @22# dubious. In this respect therefore there is a d
matic difference between Darwin’s first-order and Esse´n’s
second-order Hamiltonian.

B. Energy and stability of magnetic structures

For few-body systems it is a natural consequence of
relativistic nature of magnetism that magnetic effects
proportional to (v/c)2. For macroscopic systems, on th
other hand, the largeness of Avogadro’s number toge
with the slow, 1/r , decrease ofA with distance, results in a
totally different situation. If one used a Hamiltonian witho
the diamagnetic term,;A2, or, alternatively calculatedA in
Eq. ~3! ignoring the screening of Eq.~35!, the magnetic en-
ergy has a tendency to diverge. In Sec. II E, formula~29!, we
found that magnetic energy is minimized when it is rough
25% of the kinetic energy. This is also in agreement with
different calculation in@12# ~Sec. XI!. We can also find this
result by inserting the minimizingR52ReN into the esti-
mate~40!. This gives
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I m;2
1

8
Nmv2, ~52!

which means thatI m;2T/4. It is instructive to note how
c22 cancels in this calculation because of its appearanc
Re . Note that the numberN here is the number of particle
in a magnetic structure. This number is given
N;nRm

3 5n21/2Re
23/2, so it increases with decreasing de

sity.
An expression for magnetic energy inspired by the ‘‘e

act’’ result ~35! should be something like

I m52(
i , j

S pi•Pi j •pj

mimjc
2 D qiqj exp~2r i j /Rm!

r i j
, ~53!

where we have replaced the Coulomb-like factor inI p0 of
Eq. ~21! with a Yukawa-type exponentially screened fact
It should give a reasonable estimate for constant density
estimate for the magnetic energy of a spontaneous mag
structure based on this expression is

I m;2
1

2
N2S v

cD 2 e2 exp~21!

Rm
. ~54!

From Eq. ~37! we haveRm51/ARen. If we put n5N/Rm
3

into this we getRm5NRe , and this inserted into the abov
estimate forI m gives

I m;2
1

2 exp~1!
NS v

cD 2 e2

Re
;2

1

6
Nmv2. ~55!

The agreement of this result with Eq.~52! is reassuring.
Statistical mechanical considerations tell us that

phase-space probability density is given by

p~r j ,pj !;exp~2H/kT!5exp@2$T~pj !1F~r j !

1I m~r j ,pj !%/kT#. ~56!

We have found that the contribution ofI m to the energy is of
the same order of magnitude as the other contributions
that it increases quadratically with increasing speed of
particles, i.e., linearly with increasing temperature. Statist
mechanics thus predicts that magnetic structures in ph
space should not be sensitive to thermal disruption.

V. EFFECTIVE ONE-PARTICLE HAMILTONIAN

If we wish to study the equations of motion for particlei
assuming given positions and momenta for the remain
particles we need to separate out all terms ofH that contain
the position and momentum coordinates of particlei . We
introduce the notation

H~ i !5
pi

2

2mi
1

qi

2
f~ i !2

qi

2mic
pi•A1~ i !1

qi
2

2mic
2 A1~ i !•A1~ i ! ,

~57!

so that Eq.~19! can be writtenH5( iH( i ). If we further
denote byHi

( j ) those terms inH( j ) that contain position and
momentum coordinates of particlei we can rewriteH in the
form
in

-

.
n
tic

e

nd
e
l
se

g

H5H~ i !1 (
j ~Þ i !

Hi
~ j !1H@ i #5Heff

~ i !1H@ i #, ~58!

whereH@ i # are those terms ofH that do not refer to particle
i . ThenHeff

(i) is the effective Hamiltonian of particlei . This
Hamiltonian can then be compared to the Hamiltonian

Hext5
1

2m S p2
q

c
A~r,t ! D 2

1qf~r,t ! ~59!

of a charged particle in an external electromagnetic field

A. The weak field case

We now calculateHeff
(i) . First, if we ignore the last, dia-

magnetic terms of the other particles, we have

(
j ~Þ i !

Hi
~ j !'

qi

2
f~ i !2

qi

2mic
pi•A1~ i ! . ~60!

We thus get the effective one-particle Hamiltonian

Heff
~ i !'

1

2mi
S pi2

qi

c
A1~ i !D 2

1qif~ i ! , ~61!

i.e., essentially Eq.~59!. We thus get the expected agreeme
in this case. Note that the new second-order term, for part
i , is essential for the result~61!; without it one would not
have a complete square for the combined kinetic and m
netic energies.

B. The remaining terms

We now study the contribution toHeff
(i) from the diamag-

netic terms of the other particles. We thus consider

I d
i [ (

j ~Þ i !

qj
2

2mjc
2 A1~ j !•A1~ j !5 (

j ~Þ i !

qj
2

2mjc
2 S qipi

mic
•

Pi j

r i j

1 (
k~Þ i , j !

qkpk

mkc
•

Pk j

r k j
D •S qipi

mic
•

Pi j

r i j
1 (

l ~Þ i , j !

qlpl

mlc
•

Pl j

r l j
D .

~62!

If we now define

A1~ j !
@ i # [ (

k~Þ i , j !

qkpk

mkc
•

Pk j

r k j
5A1~ j !2

qipi

mic
•

Pi j

r i j
~63!

we can rewrite Eq.~62! as

I d
i 5 (

j ~Þ i !

~pi•Pi j !
2

2mi

qi
2qj

2

mimjc
4

1

r i j
2

1
qi

mic
pi• (

j ~Þ i !

qj

mjc
S qj

c
A1~ j !

@ i # D •

Pi j

r i j

1 (
j ~Þ i !

qj
2

2mjc
2 A1~ j !

@ i #
•A1~ j !

@ i # . ~64!

Here the last sum does not containr i or pi and thus belongs
to H@ i #. The first two, however, should contribute to the e
fective one-particle Hamiltonian for particlei .
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C. A divergent self-interaction

We first consider the first of these contributions. We c
write it

(
j ~Þ i !

~pi•Pi j !
2

2mi

qi
2qj

2

mimjc
4

1

r i j
2

5
pi

2

2mi
(

j ~Þ i !

qi
2qj

2

mimjc
4

1

r i j
2 ~113 cos2 u i j !

[
pi

2

2mi
F~r i ,pi !, ~65!

whereu i j is the angle betweenpi and ei j . Hereqi
2/(mic

2)
are classical particle radii. Since these are largest for e
trons we assume that only these contribute. To estimate
factor F we further ignore the directional dependence a
assume that particlei is at the center of a spherical distribu
tion of electrons of constant number densityne inside a ra-
dius R. We then get

F;S e2

mc2D 2E ne

r 2 dV54pS e2

mc2D 2

neR53S Re

R D 2

N.

~66!

F will thus become of unit order of magnitude whe
R2;NRe

2 . Since the Thompson scattering cross section
photons is;Re

2 this means that for suchR values the plasma
is opaque. ForR values of the order of magnitude of a ma
netic structureR5Rm;NRe we see thatF;1/N and essen-
tially negligible. The fact thatF can become large in a larg
plasma is thus seen to be an artifact of our approximation
formula ~35! shows, all results depending on integrations b
yond theRm length scale are spurious. In what follows w
ignore this term.

D. The physical contribution

The second term in Eq.~64!, on the other hand, contrib
utes in a simple way toHeff

(i) . If we define

A~ i !
v [ (

j ~Þ i !

qj

mjc
S pj2

qj

c
A1~ j !

@ i # D •

Pi j

r i j
5A1~ i !2A~ i !

A ,

~67!

we get

Heff
~ i !5

pi
2

2mi
1qif~ i !2

qi

mic
pi•A~ i !

v 1
qi

2

2mic
2 A1~ i !•A1~ i ! .

~68!

Equivalently, according to the definitions of Eq.~67!, we
find

Heff
~ i !5

1

2mi
S pi2

qi

c
A~ i !

v D 2

1qif~ i !

1
qi

2

mic
2 S A~ i !

v
•A~ i !

A 1
1

2
A~ i !

A
•A~ i !

A D ~69!

for the effective one-particle Hamiltonian.
n

c-
he
d

r

s
-

A few points are worth mentioning here. First it is po
sible, by means of a slightly different definition ofA1( j )

@ i # , to
find the algebraic form~69! without discarding the divergen
self-interaction~65!. It can, so to speak, be absorbed in t
definition of the vector potential. There are, however,
definitions that will bring the Hamiltonian to the form~61!.
One also notes that for a two-particle syste
A1( j )

@ i # 5A1(2)
@1# 50, so A( i )

A 50, and the extra terms of Eq.~69!
vanish when there are only two particles.

The notationA( i )
v is chosen since this is a vector potent

defined in terms of@p2 (q/c)A#, a quantity that correspond
to mv with normal interpretations of the quantities. Similar
the notationA( i )

A is chosen since this quantity is a potent
defined in terms of the vector potential. The explicit expre
sion for A( i )

A is found to be

A~ i !
A 5 (

j ~Þ i !

qj

mjc
S qj

c
A1~ j !

@ i # D •

Pi j

r i j

5 (
j ~Þ i !

qj
2

mjc
2 S (

k~Þ i , j !

qkpk

mkc
•

Pk j

r k j
D •

Pi j

r i j
. ~70!

For an energy minimizing state this vector will thus tend
be parallel topi and alsoA( i )

v so that the first extra term o
Eq. ~69! will be mostly positive.

E. The final result

In conclusion we have now found that the Hamiltoni
~69! of a particle moving among other charged particles w
given motions can be written

Heff5
1

2m S p2
q

c
AD 2

1qf1
q2

mc2 VA , ~71!

wheref and

VA~r,t ![A•AA1
1

2
AA

•AA ~72!

are scalar fields, andA and AA are vector fields. If this is
correct it would mean that, apart from coupling to elect
and magnetic fields as usual, the particle also couples to
essentially repulsive, scalar fieldVA with coupling constant
q2/(mc2).

The integrations that determine the fieldVA should, of
course not be extended much beyond the distance scaleRm .
This means that in the interior of a plasma the repulsive fo
will mainly contribute to the pressure but not accelerate
particles. At a surface it seems, however, to be mainl
repulsive force.

If one considers a charged particle in the neighborhood
a plasma~for example, a star! one knows that there will no
normally be any net electric fields. One also notes tha
~time-independent! magnetic field will not do work on the
particle. The new term of equation Eq.~71! will, however,
do work on such a particle and accelerate it away from
current distribution~a star is predicted to have such a dist
bution according to the discussion in Sec. II!. It is thus
tempting to believe that this term should be taken seriou
and that it will provide a simple and natural explanation
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the astrophysical phenomena manifested by stellar wind
comet tails. Until more quantitative studies have been co
pleted these beliefs must be considered preliminary.

VI. CONCLUSIONS

Above we have investigated the derivation, the credib
ity, and some consequences of the second-order Da
Hamiltonian. This Hamiltonian, which is an estimate of t
conserved phase-space energy of a system of charged
ticles, to the extent that such a concept is meaningful, ta
magnetic effects into account. In view of the great genera
and simplicity of energy and statistical mechanical arg
ments such a Hamiltonian should be useful in the invest
tion of how magnetic phenomena arise.

The main achievements of this paper are the following
~1! The proof that the magnetic energy can be split in

paramagnetic~potentially energy lowering! terms and dia-
magnetic~positive definite! terms. The fact that the second
order Darwin Hamiltonian takes into account the lead
term of both types makes it considerably better than its p
a-
,

f

nd
-

-
in

ar-
es
y
-
-

-

decessor, the simplified~first-order! Darwin Hamiltonian.
~2! The thermodynamic and other arguments that

second-order Darwin Hamiltonian predicts magnetic str
tures of the correct size. Especially the agreement with p
dictions of the simplified exact solution~35!.

~3! The proof based on the virial theorem that magne
energy lowers the energy of a plasma in the sense that
time average of the magnetic terms contribute a negative
result to the time average of the energy. The thermodyna
estimates which show that magnetic structures are stab
thermal disruption.

~4! The prediction of new effective many-body forces o
a charge in a plasma through the effective one-part
Hamiltonian. Magnetohydrodynamics also predicts su
forces but this may give a more direct way of understand
them.

Note added in proof.After submission of this manuscrip
it has come to the author’s attention that the result of E
~53! in fact has been derived by Jones and Pytte@23#, in
Fourier transformed form, for a homogeneous, on
component plasma.
l
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